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Abstract. This paper examines a new approach to the evolution of
blackjack strategies, that of cultural learning. Many traditional machine
learning approaches have concentrated on reinforcement learning ap-
proaches and report satisfactory results. Populations of neural network
agents evolve using genetic algorithms (population learning) and at each
generation the best performing agents are selected as teachers. Cultural
learning is implemented through a hidden layer in each teacher’s neural
network that is used to produce utterances which are imitated by its
pupils during many games of blackjack. Results show that the cultural
learning approach outperforms previous work as well as the best known
non–card counting human approaches.

1 Introduction

The game of blackjack has been the subject of much research, particularly in
the reinforcement learning domain. This paper introduces a cultural learning
approach for the evolution of high quality blackjack playing agents. Using a
combination of genetic algorithms and neural networks, we evolve a population
of neural network agents which play games of blackjack against an automated
dealer. Cultural learning is introduced by taking a percentage of the population
and allowing it to teach the following generation through specialised verbal out-
put nodes. Three experiments are performed, each one increasing the information
available to each agent. We compare the evolved strategies with bench–marks
obtained from a blackjack simulator.

The remainder of this paper is arranged as follows: Section 2 discusses re-
lated work, including a summary of the learning models employed in this set
of experiments and evolutionary computation approaches to the game of black-
jack. Section 3 presents the results of bench–marking several popular blackjack
strategies, Section 4 introduces the artificial life simulator employed in the ex-
periments, Section 5 presents the experimental results and Section 6 concludes
and suggests future work.



2 Related Work

2.1 Learning Models

Popular learning models for evolving populations of neural network based agents
can be roughly classified into two distinct groups: population and life-time learn-
ing.

Population Learning Population learning refers to the process whereby a
population of organisms evolves, or learns, by genetic means through a Dar-
winian process of iterated selection and reproduction of fit individuals. Learning
takes place at a purely genetic level and the agent itself does not contribute to
its survival through any independent learning or adaptation process during its
lifetime. Population learning is typically simulated through the use of genetic
algorithms[1, 2].

Life–ime Learning Agents that are capable to adapt to environmental changes
and novel situations during their life-time can be said to be employing lifetime
learning. The population as a whole continues to evolve by population learn-
ing and lifetime learning further enhances the population’s fitness through its
adaptability and resistance to change[3–9].

A phenomenon related to life–time learning, first reported by Baldwin[10]
and simulated by Hinton and Nowlan[7], occurs when certain behaviour first
evolved through life–time learning becomes imprinted onto an individual’s ge-
netic material through the evolutionary processes of crossover and mutation.
This individual is born with an innate knowledge of such behaviour and, unlike
the rest of the populations, does not require time to acquire it through life–time
learning. As a result, the individual’s fitness will generally be higher than that
of the population and the genetic mutation should become more widespread as
the individual is repeatedly selected for reproduction.

Cultural Learning Culture can be succinctly described as a process of in-
formation transfer within a population that occurs without the use of genetic
material. Culture can take many forms such as language, signals or artifactual
materials. Such information exchange occurs during the lifetime of individuals
in a population and can greatly enhance the behaviour of such species. Because
these exchanges occur during an individual’s lifetime, cultural learning can be
considered a subset of lifetime learning.

Artificial cultural evolution, or synthetic ethology[11], has been extensively
researched and a number of approaches were considered for its implementation
for this set of experiments. These included fixed lexicons[12, 13], indexed mem-
ory[14], cultural artifacts[15, 16] and signal–situation tables[17]. The approach
chosen was the increasingly popular teacher/pupil scenario[18, 19, 13, 20] where
a number of highly fit agents are selected from the population to act as teachers
for the next generation of agents, labelled pupils. Pupils learn from teachers by



observing the teacher’s verbal output and attempting to mimic it using their
own verbal apparatus. As a result of these interactions, a lexicon of symbols
evolves to describe situations within the population’s environment.

2.2 The Game of BlackJack

Blackjack or twenty–one begins with the dealer dealing two cards face–up to
each player and two to his/herself, with one card visible (the up–card) and the
other face down. Cards are valued by their face value (10 for all picture cards)
except for the ace which can be counted either as 11 or 1. The object of the game
is to obtain a higher score (the sum of all card values) than that of the dealer’s
without exceeding 21. Each player can draw additional cards until they either
stand or exceed 21 and go bust. Once all players have obtained their cards, the
dealer turns over the hidden card and draws or stands as appropriate. Should
the dealer’s hand bust, all players win.

The dealer is at considerable advantage because he/she only enters the game
once all players have fully completed their play. Thus, it is probable that some
players will have bust even before the dealer reveals the hidden card. In addition,
the fact that only one of the dealer’s cards is visible means that players must
make judgements based on incomplete information. As a rule, the dealer follows a
fixed strategy, typically standing on a score of 17 or more and drawing otherwise.

All aspects related to betting such as doubling down and splitting have been
removed from this implementation in order to facilitate comparison with previous
work which employs a similar approach.

In a casino setting, between 3 and 6 six full decks of cards are shuffled at the
start of the first hand and the game is played until the cards run out. Up to six
players and one dealer may play at a blackjack table. Again for simplicity, this
implementation considers only a single player playing against the dealer using a
single deck of cards which is shuffled at the start of each hand.

A number of very successful card–counting strategies inspired by Thorp[21]
have been developed but are not considered in this set of experiments.

Several attempts have been made to develop high performing blackjack strate-
gies with populations of neural networks using reinforcement learning tech-
niques[22, 23]. The nature of the game means that there is no perfect set of
neural network outputs from which to perform back–propagation. It is for this
reason that we wish to show that the introduction of cultural learning can gen-
erate superior strategies than reinforcement learning methods and provides the
learning framework required without knowledge of the perfect strategy.

3 Bench–marking

In order to assess the performance of any evolved strategy, a set of bench–
marks must be obtained for comparison purposes. While there have been many
attempts to calculate the performance of blackjack strategies using simulation
and probabilistic techniques[24, 25, 21], the values produced tend to vary by a



rather large margin. For instance, the success of a player employing the standard
dealer strategy is reported at between 39% and 44% wins. As a result of these
discrepancies, it was felt that it may be more meaningful to calculate the values
for various strategies using our own simulation. These values will be more readily
comparable to the performance of evolved strategies, since a large proportion of
the blackjack simulator will also be used by the evolving populations to play
games.

The blackjack simulator consists of a dealer, who employs the traditional
dealer strategy of standing on 17 or greater, and a single player whose strategy
can be set at the beginning of the simulation. As in previous work, both dealer
and player hand values are calculated by adding card values where each ace is
counted as 11 unless it would cause a bust.

Several strategies were considered:

– Dealer’s (Stand on 17 or more, Draw on less)
– Random
– Always stand
– Hoyle’s
– Uribe Evolved Strategy

The Hoyle strategy[26] is based on the dealer’s up card and the possession
of an ace. It can be summarised as:

if (dealer card < 6)
if (ace is held)

stand on 15
else

stand on 13
else

stand on 17

The Uribe Evolved strategy is taken from the work of Uribe and Sanchez[23]
and can be summarised as:

if (score> 9) or [(score> 13)and(score< 19) and(an ACE is held)]
stand

else
hit with 50% of probability

In order to produce statistically meaningful results, we performed 1000 runs
of 1000 games for each strategy. The results presented in the table below are
average wins for each strategy.



Strategy Percentage Wins Standard Deviation
Hoyle 43.70 1.587
Dealer 41.55 1.576

Uribe et al 38.76 1.505
Always Stand 37.91 1.531

Random 30.41 1.511

We can see from these results that most strategies are quite poor against the
dealer and that Hoyle’s strategy performs best. This is most likely due to its
inclusion of ace and dealer up–card information.

4 Simulator

Each agent in the population contains a neural network that allows it to play
blackjack. Once cards are dealt to the agents the value of the hand is shown
to the network using thermometer encoding[22]. In this first set of experiments,
there are 18 input nodes, representing a scale of hand values of 4-21 (Figure 1).
An initial set of trial experiments using a single input node with 18 activation
values was shown to perform poorly, motivating the decision to employ 18 input
nodes.

The agent’s decision is determined by rounding the output of the single out-
put node, where draw and stand are represented by 0 and 1 respectively. The
number of hidden layers and nodes therein is unrestricted and is determined by
the evolutionary process. The agents are evolved using a previously developed
artificial life simulator[8, 9], outlined below.
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Fig. 1. Thermometer Encoding



The architecture of the artificial life simulator can be seen as a hierarchical
structure. At the top-level of the simulator is a command interpreter which allows
users to define an experiment’s variables including the number of networks, the
number of generations to run the experiment, mutation and crossover rates and
the actual problem set which the population will be attempting to solve.

The neural network layer takes the variables set using the command inter-
preter and initialises a given number of neural networks. The layer then performs
training and testing of the networks according to the parameters of the experi-
ment. These network memory structures are then passed to the encoding layer
which transforms them into genetic code structures for use in the genetic algo-
rithm. The encoding mechanism used for this set of experiments is a modified
version of marker based encoding.

The genetic algorithm layer uses the genetic codes and the data retrieved
from the neural network layer’s testing of the networks to perform its genetic
operators on the population. A new population is produced in the form of genetic
codes. These are passed to the decoding layer which transforms each code into
a new neural network structure. These structures are then passed up to the
neural network layer for a new experiment iteration. Once the required number
of generations has been reached, the experiment finishes.

Two-point crossover is employed and weight mutation is employed which
takes the weight value and increases/decreases the value according to a random
percentage (200%). This approach was found, empirically, to be more successful
and was adopted for this set of experiments.

4.1 Encoding Scheme

An encoding scheme is necessary to map each agent’s neural network structure
to a genetic code. Many schemes were considered in preparation of these exper-
iments, prioritising flexibility, scalability, difficulty and efficiency. The scheme
chosen is based on Marker Based Encoding which allows any number of nodes
and interconnecting links for each network giving a large number of possible
neural network permutations.

Marker based encoding represents neural network elements (nodes and links)
in a binary string. Each element is separated by a marker to allow the decoding
mechanism to distinguish between the different types of element and therefore de-
duce interconnections[27, 28]. A gene code produced using this scheme is treated
as a circular entity. Thus, the code parsing mechanism reading the end of the
gene code will begin reading the start of the gene code once the end is reached
until all available information is correctly retrieved.

4.2 Simulating Cultural Evolution

In order to perform experiments related to cultural evolution, it was necessary to
adapt the existing simulator architecture to allow agents to communicate with
one another. This was implemented using an extended version of the approach



adopted by Hutchins and Hazlehurst. The last hidden layer of each agent’s neural
network functions as a verbal input/output layer (figure 2).

Input Layer

Output Layer

Verbal I/O Layer

. . .

. . .

Verbal I/O Layer

Agent 1

Agent 2

Fig. 2. Agent Communication Architecture

At end of each generation, a percentage of the population’s fittest networks
are selected and are allowed to become teachers for the next generation. The
teaching process takes place as follows: a teacher is stochastically assigned n
pupils from the population where n = Npop

Nteachers
, where Npop is the population

size and Nteachers is the number of teachers. Each pupil follows the teacher in
its environment and observes the teacher’s verbal output as it interacts with its
environment. A teaching cycle occurs when the pupil attempts to emulate its
teacher’s verbal output using back-propagation. Once the number of required
teaching cycles is completed, the teacher networks die and new teachers are
selected from the new generation.

Unlike previous implementations, the number of verbal input/output nodes
is not fixed and is allowed to evolve with the population, making the system
more adaptable to potential changes in environment. In addition, this method
does not make any assumptions as to the number of verbal nodes (and thus the
complexity of the emerging lexicon) that is required to effectively communicate.

5 Experiments

Each experiment allows 100 agents to evolve over 500 generations. At each gen-
eration, agents play 100 games against a dealer strategy and an agent’s fitness
is determined by the percentage of wins obtained scaled to [0.0,1.0]. Agents



are linearly ranked and selected for reproduction using roulette wheel selection.
Crossover and mutation are applied with probabilities 0.6 and 0.02 respectively.
When cultural learning is applied, 10% of each generation are selected to act as
teachers for the next. Teaching cycles are set at 2 and a noise value in the range
[-0.5,0.5] is added to the each interaction with probability 0.01. Each of these
settings were empirically determined to be suitable.

5.1 Basic Experiment

The results for these experiments are presented in Figure 3. In addition to the
average fitness of the population, both Dealer and Hoyle strategy levels are
shown for comparison purposes.
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Fig. 3. Experiment 1

Both populations begin at fitness (define) levels below 0.3 (worse than even a
random strategy) but quickly improve until generation 200, where both stabilise.
The introduction of cultural learning provokes a slight improvement in fitness
over the simple genetic algorithm but is not able to bring the population much
above the standard Dealer strategy.

The strategies employed by the population were extracted by feeding all pos-
sible card values to each network in the population at generation 500 and noting
the resulting agent decisions. On examination of these strategies, we discovered
that the learning population is infact using the dealer strategy of standing on



17 or more while the simple genetic algorithm population is using a similar but
less effective strategy of standing on 16 or more.

Given that the agents receive such little information about the game, it is
unsurprising that they should only be able to discover the Dealer strategy since
this is the best possible strategy given only the current hand value as a guide.

5.2 Introducing the Ace

Of all cards in the game of blackjack, the Ace is the most versatile since it can
be used both as an 11 or as a 1, improving the chance of a better hand if used
wisely. Intuitively, better strategies should evolve as a result of ace information
being introduced.

This set of experiments is identical to the first except that each agent’s neural
network is shown information regarding its possession of an ace. To implement
this, an additional input unit was created bringing the total number of input
nodes for each network to 19. The new ace node is set to 1 if the agent’s hand
has an ace, and to 0 otherwise. All other variables remain equal to the first
experiment.
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Fig. 4. Experiment 2

The results illustrated in Figure 4 show that the introduction of ace infor-
mation gives rise to a very slight improvement in overall fitness. Once again,
the population employing cultural learning performs modestly better than that



using the simple genetic algorithm (average of 0.427 or 42.7% wins for the GA
and 0.431 or 43.1% wins for cultural learning) and overall, results have improved
since the introduction of ace information.

The evolved strategy of the learning population consists of standing on 14 or
greater if no ace is present and standing on 18 otherwise. The strategy employs
the ace information to determine when and when not to risk drawing another
card. Since an Ace can be valued at both 11 or 1, a hand with an ace and value
17 can also be valued at 7 posing little risk if another card is drawn. On the
other hand, if no ace is held, it is prudent to stand on a lower value for the risk
of busting is greater.

5.3 Dealer Information

The addition of ace information provides a vary slight improvement on the pre-
vious experiment and does not yet achieve the level of the Hoyle strategy. Most
advanced strategies, including Hoyle’s, take the dealer’s up–card into account
when determining a course of action. Therefore, we introduce the dealer’s card
to the agent population, by adding an additional 10 input nodes, one for each
of the dealer’s possible up–cards (2-9, 10 for all picture cards and the ten, Ace).
All other variables remain equal to the last experiment.
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Fig. 5. Experiment 3

The graph in figure 5 shows that the addition of dealer information dramati-
cally improves the performance of both populations but particularly that of the



population employing cultural learning which achieved highs of nearly 0.46 (46%
wins) versus 0.44 for population learning. The resulting strategy is significantly
more complex than in the last experiments:

if (an Ace is held)
{

if (dealer has a 6 or higher)
stand on 16

else
stand on 17

}
else
{

if (dealer has a 7 or higher)
stand on 17

else
stand on 13

}

It is clear from the strategy that the evolved agents are employing the new
dealer and ace information to the full extent and have identified a threshold value
for the dealer up–card. The strategy is tested in the next section to ascertain its
performance with respect to the bench–marked strategies.

5.4 Strategy Testing

As a result of the inherent random nature of blackjack, it is necessary to test
the strategies over a number of runs to observe whether they are successful. The
final evolved strategy was taken and hard–coded into the blackjack simulator
and 1000 runs of 100 games were played. The averaged results are displayed in
the table below:

Strategy Percentage Wins Standard Deviation
Hoyle 43.70 1.587

Evolved Strategy 43.67 1.582
Dealer 41.52 1.576

Sanchez et al 38.43 1.505
Always Stand 38.00 1.531

Random 30.67 1.511

The results of the simulation show that the evolved strategy does not quite
reach the level of Hoyle’s strategy but is very close. On examination of the stan-
dard deviations, it is clear that the top two strategies are relatively similar,
suggesting that the population has evolved an optimum strategy given the infor-
mation available. It is likely that in order to out–perform Hoyle’s strategy it is
necessary to keep track of cards that have been played during a game, something
which would only become truly useful if the number of players was increased.



6 Conclusion

We have shown that the addition of cultural learning to a population of neural
network agents evolving using a genetic algorithm can produce robust blackjack
strategies that out–perform those evolved thus far using reinforcement learning.
As in previous work, the addition of dealer information to the population sig-
nificantly improves performance. Through the bench–marking process we have
shown that the evolved strategy is practically equivalent to the best human
strategy which does not incorporate card–counting. Future work will introduce
more players per game in the with the expectation of evolving agents capable of
card counting strategies such as those developed by human experts.

References

1. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Reading, MA, Addison-Wesley, 1989.

2. J. H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor MI: The
University of Michigan Press, 1975.

3. G. Mayley. Guiding or hiding: Explorations into the effects of learning on the rate
of evolution. In Proceedings of the Fourth European Conference on Artificial Life.
MIT Press, 1997.

4. James Watson and Janet Wiles. The rise and fall of learning: A neural network
model of the genetic assimilation of acquired traits. In Proceedings of the 2002
Congress on Evolutionary Computation (CEC 2002), pages 600–605, 2002.

5. F. B. Pereira and E. Costa. How learning improves the performance of evolu-
tionary agents: A case study with an information retrieval system for a distributed
environment. In Proceedings of the International Symposium on Adaptive Systems:
Evolutionary Computation and Probabilistic Graphical Models (ISAS 2001), pages
19–23, 2001.

6. D. Parisi S. Nolfi, J. L. Elman. Learning and evolution in neural networks. In
Adaptive Behavior, volume 3, pages 5–28, 1994.

7. G. E. Hinton and S. J. Nowlan. How learning guides evolution. In Complex
Systems, volume I, pages 495–502, 1987.

8. D. Curran and C. O’Riordan. On the design of an artificial life simulator. In
V. Palade, R. J. Howlett, and L. C. Jain, editors, Proceedings of the Seventh Inter-
national Conference on Knowledge-Based Intelligent Information & Engineering
Systems (KES 2003), University of Oxford, United Kingdom, 2003.

9. D. Curran and C. O’Riordan. Artificial life simulation using marker based encod-
ing. In Proceedings of the 2003 International Conference on Artificial Intelligence
(IC-AI 2003), volume II, pages 665–668, Las Vegas, Nevada, USA, 2003.

10. J.M. Baldwin. A new factor in evolution. In American Naturalist 30, pages 441–
451, 1896.

11. L. Steels. The synthetic modeling of language origins. In Evolution of Communi-
cation, pages 1–34, 1997.

12. H. Yanco and L. Stein. An adaptive communication protocol for cooperating mobile
robots, 1993.

13. A. Cangelosi and D. Parisi. The emergence of a language in an evolving population
of neural networks. Technical Report NSAL–96004, National Research Council,
Rome, 1996.



14. L. Spector and S. Luke. Culture enhances the evolvability of cognition. In Cognitive
Science (CogSci) 1996 Conference Proceedings, 1996.

15. E. Hutchins and B. Hazlehurst. Learning in the cultural process. In Artificial Life
II, ed. C. Langton et al. MIT Press, 1991.

16. A. Cangelosi. Evolution of communication using combination of grounded symbols
in populations of neural networks. In Proceedings of IJCNN99 International Joint
Conference on Neural Networks (vol. 6), pages 4365–4368, Washington, DC, 1999.
IEEE Press.

17. B. MacLennan and G. Burghardt. Synthetic ethology and the evolution of coop-
erative communication. In Adaptive Behavior 2(2), pages 161–188, 1993.

18. A. Billard and G. Hayes. Learning to communicate through imitation in au-
tonomous robots. In 7th International Conference on Artificial Neural Networks,
pages 763–738, 1997.

19. D. Denaro and D. Parisi. Cultural evolution in a population of neural networks.
In M.Marinaro and R.Tagliaferri (eds), Neural Nets Wirn-96.New York: Springer,
pages 100–111, 1996.

20. E. Hutchins and B. Hazlehurst. How to invent a lexicon: The development of shared
symbols in interaction. In N. Gilbert and R. Conte, editors, Artificial Societies:
The Computer Simulation of Social Life, pages 157–189. UCL Press: London, 1995.

21. E. O. Thorp. Beat the Dealer. Random House, 1966.
22. D. K. Olson. Learning to Play Games from Experience: An Application of Artificial

Neural Networks and Temporal Difference Learning. Pacific Lutheran University,
1993.

23. Andrs Prez-Uribe and Eduardo Sanchez. Blackjack as a test bed for learning strate-
gies in neural networks. In International Joint Conference on Neural Networks,
IJCNN’98, 1998.

24. E. O. Thorp. The Mathematics of Gambling. Lyle Stuart, 1984.
25. H. Maisel R. R. Baldwin, W. E. Cantey and J. P. McDermott. The optimum

strategy in blackjack. In Journal of the American Statistical Association, 1956.
26. A. H. Morehead and G. M. Smith. Hoyle’s Rules of Games. Plume, 1963.
27. H. Kitano. Designing neural networks using genetic algorithm with graph genera-

tion system. In Complex Systems, 4, 461-476, 1990.
28. G. F. Miller, P. M. Todd, and S. U. Hedge. Designing neural networks using ge-

netic algorithms. In Proceedings of the Third International Conference on Genetic
Algorithms and Their Applications, pages 379–384, 1989.


