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Abstract— The focus of this paper is to examine the effect of
cultural learning on a population of agentsin various types of
dynamic environment. Cultural learning allows highly fit agents
in a population to teach others in order to achieve higher
levels of fithess. Theseagentsare placed in environments which
may change very frequently, moderately or infrequently. The
performance of cultural learning is compared with experiments
undertaken using population learning, i.e genetic evolution, of
agentsin the sameervironments.

I. INTRODUCTION

A robust multi-agentsystemshould be able to withstand
and adaptto ervironmentalchangesThis type of behaiour
parallels that of the natural world where speciescapable
of adaptionwill have more chanceof evolutionary success
than onesthat are rigid and incapableof such plasticity At
its most basic level, adaptationin naturetakes the form of
geneticevolution over generationsalso known as population
learning. At a higher level, organismscapableof adapting
their behaiour to suit a particular ervironmentduring their
lifetimes will be morelikely to survive in the long term.

Lifetime learning can take mary forms — at its simplest
it is a reactionto a particular stimulus and the adjustment
of world view that follows the reaction. Thus, very simple
organismsare capableof learningto avoid harmfulsubstances
andareattractedo otherbeneficialones At its mostcomple,
societiesof organismscommunicateén orderto impart useful
knowledgeto othersin the community This is the essence
of cultural learning,the transmissiorof information through
generationdy non—genetigneans.

These forces can be modelled in computer systemsby
employing geneticalgorithmsto simulatepopulationlearning,
and neural networks to simulatelifetime learning. Typically,
a populationof neural networks is randomly generatedand
the usual geneticoperatorssuch as selection,crosseer and
mutation are applied at each generationto arrive at higher
levels of populationfitness. At each generation,the neural
network is allowedto learn,usuallythroughan errorreducing
algorithmsuchas error back—propagationto implementcul-
tural learning, highly fit individuals are selectedto teachthe
remainingpopulationthroughrepeatectultural exchanges.
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The focus of this paperis to examinethe effect of various
typesof dynamicenvironmenton a populationof agentsem-
ploying populationlearningalone,anda populationemploying
population and cultural learning. We presenta number of
experimentalresults which illustrate the benefit of cultural
learningin eachtype of ervironment.The remainderof the
paperis organisedas follows: Section2 covers somerelated
work, paying particular attentionto typesof learning previ-
ously employed. In section3 we describethe experimental
setup,including the artificial life simulatorusedfor all exper
imentsandthe cultural learningframevork. In Section4, we
detail the resultsandin Section5, conclusionsare presented
and future directionsare outlined.

Il. RELATED WORK

A numberof learningmodelscan be derived from obser
vationin nature.Thesehave traditionally beenclassifiedinto
two distinct groups:populationand life-time learning.

Populationlearningrefersto the processwvherebya popula-
tion of organismsvolves,or learns by geneticmeanghrough
a Darwinianprocessf iteratedselectionand reproductionof
fit individuals. In this model, the learning processis strictly
confinedto each organisms genetic material: the organism
itself doesnot contritute to its survival throughary learning
or adaptatiorprocess.

By contrast,there exist speciesin nature that are capa-
ble of learning, or adaptingto ervironmental changesand
novel situationsat an individual level. Suchlearning, know
as life-time learning, still employs populationlearningto a
degree, but further enhanceghe populations fithessthrough
its adaptabilityandresistancéo change Anotherphenomenon
related to life-time learning, first reported by Baldwin[1],
occurs when certain behaiour first evolved through life-
time learningbecomesmprinted onto an individual’s genetic
materialthroughthe evolutionary processe®f crosseer and
mutation.This individual is bornwith aninnateknowledgeof
suchbehaiour and, unlike the rest of the populations,does
not requiretime to acquireit throughlife-time learning. As
a result, the individual’s fithesswill generallybe higherthan
thatof the populationandthe geneticmutationshouldbecome



more widespreadas the individual is repeatedlyselectedfor
reproduction.

Researcthas shavn that the addition of life-time learning
to a populationof agentds capableof achieving muchhigher
levels of populationfithessthan populationlearningalone[3,
[3]. Furthermorepopulationlearningaloneis not well suited
to changingervironments([4.

A. Cultural Learning

Culture can be succinctlydescribedas a processof infor-
mation transferwithin a populationthat occurswithout the
use of geneticmaterial. Culture can take mary forms such
as language,signals or artifactual materials. Such informa-
tion exchangeoccursduring the lifetime of individualsin a
populationand can greatly enhancethe behaiour of such
speciesBecausdheseexchange®ccurduringanindividual's
lifetime, cultural learning can be considereda subset of
lifetime learning.

An approachknown as synthetic ethology[3, [6] argues
that the study of languageis too difficult to perform in
real world situationsand that more meaningfulresultscould
be producedby modelling organismsand their ervironment
in an artificial manner Atrtificial intelligence systemscan
createtightly controlled environmentswhere the behaiour
of artificial organismscan be readily obsered and modified.
Using geneticalgorithms,the evolutionary approachinspired
by Darwinianevolution, andthe computingcapacityof neural
networks, artificial intelligenceresearcherfave beenable to
achieve very interestingresults.

In particular experiments conducted by Hutchins and
Hazlehurst[Y simulate cultural evolution throughthe use of
a hiddenlayerwithin anindividual neuralnetwork in the pop-
ulation. This in effect, simulatesthe presenceof a Language
AcquisitionDevice LAD, thephysiologicakomponenbf the
brain necessaryfor languagedevelopment,whose existence
was first suggestedy Chomsk/[8]. The hiddenlayer actsas
a verbal input/outputlayer and performsthe task of feature
extraction usedto distinguishdifferent physicalinputs. It is
responsibleor both the perceptionand productionof signals
for the agent.

A numberof approachewereconsideredor theimplemen-
tation of cultural learning including fixed lexicons[d, [10],
indexed memory[1], cultural artifacts[12, [13] and signal—
situationtables[3. The approachchosenwasthe increasingly
popularteacher/pupiscenario[1} [15], [10] wherea number
of highly fit agentsare selectedfrom the populationto act
asteacherdor the next generatiorof agents labelledpupils.
Pupils learn from teachersby observingthe teachers verbal
output and attemptingto mimic it using their own verbal
apparatus.As a result of these interactions,a lexicon of
symbolsevolvesto describesituationswithin the populations
ervironment.

B. DynamicEnvironments

Many approacheshave beentaken to simulate changing
ervironmentsfor multi-agentand artificial life systems[1h

[17], [18], [19] focusingon LatentEnegy Environmentsand

fitnessfunctionswhich vary over time. Our approachwhile

straightforvard, has the advantageof clarity: agentsare re-

peatedlypresentedvith a numberof bit—patternsepresenting
either food or poison. An agent capableof distinguishing
the two by correctly ingesting food and avoiding poison
will be rewardedwith a high fitnesslevel and reproductve

opportunity At each ervironmental changeall bit—patterns
representingood aremadeto represenpoisonandvice—\ersa
thus completely reversing the environment. Our goal is to

evolve a populationcapableof sustainingrepeatedterations
of suchenvironmentalchanges.

IIl. EXPERIMENTAL SETUP

A. Simulator

The experimentsoutlined in this paper were performed
using a previously developed artificial life simulator The
simulator allows populationsof neural networks to evolve
usinga geneticalgorithmandeachnetwork canalsobetrained
during eachgeneratiorof an experimentto simulatelife—time
learning.

The mappingof neural network to geneticcode required
for the geneticalgorithmis achieved usinga modifiedversion
of marker basedencoding.This allows networks to develop
ary numberof nodesandinterconnectingdinks, giving a large
numberof possibleneuralnetwork architecturepermutations.

Marker basedencodingrepresentsieuralnetwork elements
(nodesandlinks) in a binarystring. Eachelements separated
by a marker to allow the decodingmechanisnto distinguish
betweenthe differenttypesof elementand thereforededuce
interconnection$20], [21].

In this implementationa marker is given for every nodein
a network. Following the node marlker, the nodes detailsare
storedin sequentiabrderon the bit string. This includesthe
nodes label and its thresholdvalue. Immediatelyfollowing
the nodes details, is another marker which indicates the
start of one or more node—weightpairs. Each of thesepairs
indicatesa back connectionfrom the nodeto other nodesin
the network along with the connectiors weight value. Once
the last connectionhas beenencodedthe schemeplacesan
endmarler to indicatethe end of the nodes encoding.

The networks undego variousstageshroughouttheir life-
time. First, the genecodesare decodedo createtheir neural
network structure. Training is then performed using error
back—propagatioffior a given numberof iterations (training
cycles). Eachnetwork is testedto determineits fitnessusing
a fitness function which takes the agents neural network
error into accountand the populationis ranked using linear
basedfitness ranking producingfitness valuesin the range
[0.0,1.0].Roulettewheelselectionis employedto generatehe
intermediatgpopulation.Cross@er andmutationoperatorsare
thenappliedto createthe next generation.

B. Cultural Learning Framevork

In orderto performexperimentgelatedto culturalevolution,
it wasnecessaryo adaptthe existing simulatorarchitectureo



allow agentsto communicatevith one another This wasim-

plementedusingan extendedversionof the approachadopted
by Hutchins and Hazlehurst.The last hidden layer of each
agents neuralnetwork functionsasa verbalinput/outputlayer
(figure 1).

Agent 1

Input Layer

QQQ OO

Agent 2

Fig. 1. Agent CommunicationArchitecture

At end of eachgeneration,a percentageof the popula-
tion’s fittest networks are selectedand are allowed to become
teacherdfor the next generation.The teachingprocesstakes
placeasfollows: a teachelis stochasticallyassignednh pupils
from the populationwheren = "e\'a":hpers , whereNpqp is the
populationsizeandNeachers IS the numberof teachersEach
pupil follows the teacherin its ervironmentand obsenesthe
teaches verbaloutputasit encountersvhatit believesto be
food or poisonbit patternsThe pupil thenattemptso emulate
its teachers verbal output using back-propagationOncethe
teachingproceshasbeencompletedtheteachemnetworksdie
andnew teachersare selectedrom the nen generation.

Unlike previous implementations,the number of verbal
input/outputnodesis not fixed andis allowed to evolve with
the populationmakingthe systemmoreadaptabldo potential
changesin ervironment. In addition, this method does not
male ary assumptionssto the numberof verbalnodes(and
thusthe compleity of the emeping lexicon) thatis required
to effectively communicate.

IV. EXPERIMENTAL RESULTS

The populationof agentsexist in a world wherethey are
presentedvith bit patterngepresentingood andpoisonitems.
An agentmustlearnto distinguishbetweenthe two in order
to attain high levels of fitnessand have a high probability of
reproductve opportunitiesin this setof experimentsthe 5-bit
parity problemis usedto represenfood andpoisonelements,
wherefood is representedby the value 1 and poisonby the
value 0. Thus, agentscorrectly identifying 01001 as poison
and00001asfood will be awardedhigh levels of fitness.

Experimentswere carried out to comprehensely assess
the effect of a dynamic ervironment on agentsemploying
populationlearning on its own and secondlya population
of agentsemploying both populationand cultural learning.
A dynamic ervironment can be generatedin a variety of
ways, but for the purposesof this experiment we chose
to create ervironmentsin which changesoccur at regular
intervals. Thesechangesare implementedby swappingfood
andpoisonitemsin the agents ervironment- thusessentially
reversingthe 5—bit parity problem.Using this approachthree
ervironmentsare created:

- onein which changesoccur often (a quickly changing
ervironment)

- onein which changesoccur more slowly (a moderately
changingernvironment)

- onein which change®ccurvery slowly (a slovly chang-
ing ervironment)

We will discussthe threeenvironmentsin turn, focusingon
populationlearningalone,andpopulationandculturallearning
in combinationin eachof the experiments.

A. Quickly ChangingEnvironment

The results illustrated in figure 2 shav that when the
populationof agentsemploys populationlearningalone,little
progressis made. Ervironmental changesoccur every two
generationscreatingsevere oscillationsof populationfitness.
This type of ervironmentposesa seriousstability problem
to the population,which is unableto retain a steadylevel of
fitness.

0.25

SFTS SRUR SO S KRS SR SNSRI

Fitness

N —_—"»-. =

0.05k------- Lo Lo Lo S Lo

150 200 250 300 350

Generations

0 50 100 400

Fig. 2. Highly DynamicErnvironment- Population Learning

Once cultural learningis introduced,no major gains are
madein termsof fithess,but the populationhas managedo
stabilise (figure 3). The differencebetweenthe two sets of
resultsis striking: no oscillationsof fithessoccuroncecultural
learningis introduced.

B. Modefately ChangingEnvironment

In a moderately dynamic ervironment, ervironmental
changesoccur less frequentlyallowing agentsto evolve and
increasetheir fithessbetweenchangesFigure4 illustratesthe
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Fig. 3. Highly Dynamic Ervironment- Population and Cultural Learning

resultsof the moderatelydynamicervironmenton agentsem-

ploying populationlearningalone.The ervironmentalchanges
every 20 generationsare clearly depictedin the resultsas a

suddendrop in fithesslevel, followed by a small recovery.

Oncethe environmentrevertsto its original state20 genera-
tions later, the populations fithessquickly risesto its original

level. This suggestghat the populationhasevolved to tackle
the first ervironment,but is making little progressonce the
ervironmentis inverted(i.e. poisonbecomesood and vice—
versa),implying that populationlearningis not swift enough
to track suchchanges.

0.5

0.45

0.4

0.35

0.3

0.25

Fitness

0.2

0.15

0.1

0.05

200 250 300 350 400

Generations

0 50 100 150

Fig. 4. Modemtely Dynamic Environment- Population Learning

Figure 5 shavs the results of applying cultural learning
to this ervironment. Following a relatively stable period, a
series of sharp oscillations occur following generation60.
The environmentalchangesare even more clear in this set
of results,with eachchangeproducinga cleardropin fitness.
However, unlike the previous result, thereis a fast recovery
following eachdrop, shaving thatthe populationis capableof
recovering from eachchangelt is clearthatthe populationis
capableof evolving successfullyin bothtypesof ervironment
andthatthe additionof culturallearningmeanghatagentsare
capableof thriving in both ervironments.
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Fig.5. Modemtely DynamicEnvironment Populationand Cultural Learning

C. Slowly ChangingEnvironment

In this last set of experiments,environmentalchangesoc-
cur much more slowly, every 100 generationsin this type
of ervironment, agent populationshave the opportunity to
evolve relatively undisturbedor a prolongedperiod,resulting
in higher levels of fitness. Figure 6 shavs the results for
populationlearningalone.Eachervironmentalchangeas again
clearly demarcatedy a suddenplungein populationfitness.
It is clearfrom theseresultsthat the populationhasevolved
to successfullyinhabit the first environment,but that oncethe
ervironmentchangego theinvertedversion,the populationis
incapableof sustainedecovery.
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Fig. 6. SlowDynamicEnvironment- Population Learning

The final set of results, shovn in figure 7, once again
displays the advantageof cultural learning. Environmental
changesare still clearly evident in the graph, but at each
change,the populationrecovers swiftly. While this popula-
tion’s fitnessdoesnot rise to the higherlevels of the previous
experiment,agentsemplgying cultural learning seemby far
moreflexible in the faceof altering ervironments.

V. CONCLUSIONS

It is clear from the experimentalresultsthat the addition
of cultural learningto populationsof agentsallows greater
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Fig. 7. Slow DynamicErnvironment- Population and Cultural Learning

stability and recovery to take place. This holds true for all

three types of dynamic environmentpresentedand suggests

that furtherwork shouldbe carriedout examiningothertypes
of dynamismand more comple« problems.
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